2,945 research outputs found

    Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    Full text link
    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω≃0.5Ωe\omega \simeq 0.5\Omega_e, where Ωe\Omega_e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe0.3\Omega_e and 0.6Ωe0.6\Omega_e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test-particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles

    PC-SEAPAK user's guide, version 4.0

    Get PDF
    PC-SEAPAK is designed to provide a complete and affordable capability for processing and analysis of NOAA Advanced Very High Resolution Radiometer (AVHRR) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. Since the release of version 3.0 over a year ago, significant revisions were made to the AVHRR and CZCS programs and to the statistical data analysis module, and a number of new programs were added. This new version has 114 procedures listed in its menus. The package continues to emphasize user-friendliness and interactive data analysis. Additionally, because the scientific goals of the ocean color research being conducted have shifted to larger space and time scales, batch processing capabilities were enhanced, allowing large quantities of data to be easily ingested and analyzed. The development of PC-SEAPAK was paralled by two other activities that were influential and assistive: the global CZCS processing effort at GSFC and the continued development of VAX-SEAPAK. SEAPAK incorporates the instrument calibration and support all levels of data available from the CZCS archive

    SEAPAK user's guide, version 2.0. Volume 1: System description

    Get PDF
    The SEAPAK is a user interactive satellite data analysis package that was developed for the processing and interpretation of Nimbus-7/Coastal Zone Color Scanner (CZCS) and the NOAA Advanced Very High Resolution Radiometer (AVHRR) data. Significant revisions were made to version 1.0 of the guide, and the ancillary environmental data analysis module was expanded. The package continues to emphasize user friendliness and user interactive data analyses. Additionally, because the scientific goals of the ocean color research being conducted have shifted to large space and time scales, batch processing capabilities for both satellite and ancillary environmental data analyses were enhanced, thus allowing large quantities of data to be ingested and analyzed in background

    Education Evolution: A Qualitative Study of Student Perception

    Get PDF
    The educational imperative of textbooks was examined for university business students. 82 students were interviewed to determine their perceptions of textbooks and the factors that affect their willingness to purchase. Student preferences on delivery format, content style and price were examined using choice activities. Issues raised related to the practical nature of print, price sensitivity, student collaboration and the tradeoffs of current and future learning materials for students. Print textbooks were more popular than e-Books and summary chapters are favoured for ease of information consumption. Pacific Rim editions are favoured over International editions and currency and local relevance are key determinants in the students’ preferences. The ‘authority of print’ and ‘experience’ of purchasing and owning a hardcopy version of a text book are posited as key considerations for students

    SEAPAK user's guide, version 2.0. Volume 2: Descriptions of programs

    Get PDF
    The SEAPAK is a user-interactive satellite data analysis package that was developed for the processing and interpretation of Nimbus-7/Coastal Zone Color Scanner (CZCS) and the NOAA Advanced Very High Resolution Radiometer (AVHRR) data. Significant revisions were made since version 1.0, and the ancillary environmental data analysis module was greatly expanded. The package continues to be user friendly and user interactive. Also, because the scientific goals of the ocean color research being conducted have shifted to large space and time scales, batch processing capabilities for both satellite and ancillary environmental data analyses were enhanced, thus allowing for large quantities of data to be ingested and analyzed

    Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala

    Get PDF
    BACKGROUND: The latero-capsular part of the central nucleus of the amygdala (CeLC) is the target of the spino-parabrachio-amygdaloid pain pathway. Our previous studies showed that CeLC neurons develop synaptic plasticity and increased neuronal excitability in the kaolin/carrageenan model of arthritic pain. These pain-related changes involve presynaptic group I metabotropic glutamate receptors (mGluRs) and postsynaptic NMDA and calcitonin gene-related peptide (CGRP1) receptors. Here we address the role of group II mGluRs. RESULTS: Whole-cell current- and voltage-clamp recordings were made from CeLC neurons in brain slices from control rats and arthritic rats (>6 h postinjection of kaolin/carrageenan into the knee). Monosynaptic excitatory postsynaptic currents (EPSCs) were evoked by electrical stimulation of afferents from the pontine parabrachial (PB) area. A selective group II mGluR agonist (LY354740) decreased the amplitude of EPSCs more potently in CeLC neurons from arthritic rats (IC(50 )= 0.59 nM) than in control animals (IC(50 )= 15.0 nM). The inhibitory effect of LY354740 was reversed by a group II mGluR antagonist (EGLU) but not a GABA(A )receptor antagonist (bicuculline). LY354740 decreased frequency, but not amplitude, of miniature EPSCs in the presence of TTX. No significant changes of neuronal excitability measures (membrane slope conductance and action potential firing rate) were detected. CONCLUSION: Our data suggest that group II mGluRs act presynaptically to modulate synaptic plasticity in the amygdala in a model of arthritic pain
    • …
    corecore